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When raindrops with a diameter of the order of 1 mm hit a plane water surface they 
entrain air bubbles that radiate noise in the course of volume oscillations. The paper 
presents a model of the underwater noise of rain produced by this process. The depth 
of submergence, radius, and initial energy of the entrained bubbles are obtained 
numerically for a number of drop sizes. The bubbles are assumed to radiate as 
dipoles, and the total underwater noise is calculated by integrating over the size of 
the entraining rain drops. The results are compared both with laboratory experiments 
of single-drop impacts and field data of rain noise. It is found that the model gives 
somewhat larger bubbles than are observed experimentally. As a consequence, the 
characteristic spectral peak of rain is predicted to occur a t  a somewhat lower 
frequency than found in experiment. However the level of the peak is in reasonable 
agreement with data. The amount of noise due to the process of drop impact itself 
is also estimated and found to be several orders of magnitude lower than the data. 
Therefore, in spite of some deficiencies of the model and of the computational results, 
the proposed mechanism for the underwater noise of rain is strongly supported by 
this study. 

1. Introduction 
The underwater noise produced by rain has recently been measured by a number 

of groups and in different conditions (Scrimger 1985; Scrimger et al. 1987; Scrimger, 
Evans & Yee 1989; Nystuen 1986; Nystuen & Farmer 1989; Pumphrey, Crum & 
Bjorn0 1989). A striking finding common to all these studies is the presence of a very 
prominent and well-defined spectral peak at, a frequency of approximately 14 kHz. 
Quite unexpectedly, the position and general shape of this peak are found to be 
independent of the rainfall rate, and even of the size distribution of the rain drops. 
A striking example, from Scrimger et al. (1987), is reproduced in figure 1. Figure 1 (a) 
shows the measured raindrop size distributions for two rain events, the underwater 
noise of which is shown in figure 1 ( b ) .  It can be seen that the size distributions look 
very different, while the measured spectra are strikingly alike. Some other examples 
can be found in Scrimger et al. (1987). 

In a recent study (Prosperetti, Pumphrey & Crum 1989) we have proposed an 
explanation for these findings based on the fluid mechanics of the impact of drops on 
liquid surfaces. The starting point is work by Pumphrey & Crum (1988), Pumphrey 
et al. (1989), Pumphrey & Crum (1990) and Pumphrey & Elmore (1990) which 
presents conclusive evidence that most of the noise produced by impacting droplets 
at normal incidence is not actually produced by the impact itself, but by small air 
bubbles entrained by the impacting drop. A remarkable feature of this process is 
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FIGURE 1. (a) Measured raindrop size distributions for rain events a and b of Scrimger et al. 1987) ; 
(21) corresponding underwater noise spectra. 

FIQURE 2. The shaded area in the parameter space (R, U )  for drop impact represents the regular 
bubble entrainment region as obtained experimentally by Pumphrey & Crum (1988, 1990). The 
dotted line is the terminal velocity of a drop in free fall as given by Dingle & Lee (1972). 

that, in the parameter space consisting of the drop radius R and impact velocity U ,  
air bubbles are found to be entrained only in a sharply defined region highlighted by 
the hatching in figure 2. A similar behaviour has been observed in the case of other 
liquids (Detsch & Harris 1990). While R and U are independent variables in the 
laboratory or in a computation, in the case of raindrops, they are connected by a 
functional relation expressing the fact that the drops impact at terminal velocity. 
This relation is represented by the dotted line on the left of figure 2. The explanation 
of rain noise put forward in Prosperetti et al. (1989) is then that the only drops that 
make a significant contribution to the underwater noise of rain are those in the 
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narrowly defined size range where the terminal velocity curve intersects the shaded 
area in figure 2. Since this range, consisting of drops having radii between 0.47 and 
0.55 mm, approximately, is small, some universality may be expected in the acoustic 
signature of rain. In the case of figure 1 ( a ) ,  the bubble-producing raindrops are those 
corresponding to bin numbers 6 and 7. It will be observed that, while the overall drop 
size distributions differ markedly in other size ranges, the drop populations in these 
bins are fairly similar in both cases, which supports the above explanation. 

The purpose of the present paper is to strengthen the plausibility of the rain noise 
mechanism just described by showing that noise spectra comparable to the 
experimentally measured ones can be reproduced by completely theoretical means 
by calculating the size and initial energy of entrained air bubbles, assuming that they 
radiate as dipoles, and integrating the individual emissions over time and over the 
surface of the water body. In this way we produce what may be called synthetic rain- 
noise spectra, the only experimental input to which is the raindrop distribution (or, 
more simply, a total drop count) in the appropriate size range. 

From the strictly fluid mechanical viewpoint, the main point of interest of the 
present work lies in the detailed mechanics of air bubble entrainment and its 
inhibiting factors a t  low and high impact velocities. We have already presented a 
theoretical model and a numerical technique to study this process in an earlier paper 
(Oiuz & Prosperetti 1990a). Here we shall apply that approach to the study of 
bubble entrainment along the terminal velocity curve of figure 2. A considerable 
insight into the entrainment mechanics is gained in this way. 

2. Rain noise spectrum 
In this section we shall show how the underwater noise due to the entrained 

bubbles can be calculated from a knowledge of the quantities pertaining to  the 
entrainment process. 

We assume the surface of the water body on which the rain falls to be flat. This 
will be true in a time-averaged sense, although the presence of waves may have an 
important effect on the bubble entrainment, as will be discussed in $6. We also 
assume that each drop in the narrow regular entrainment region of figure 2 will yield 
a bubble with an initial energy, radius R,, and depth of submergence d, all dependent 
on R. 

Since at  the time of formation the bubble is not in mechanical equilibrium but has 
a non-zero energy, this initial energy will be dissipated in the course of the volume 
pulsations that produce the acoustic emission. The depth of submergence of the 
entrained bubbles is typically a few millimetres and the wavelength of the sound 
radiated of the order of 0.1 m. Hence the presence of the neighbouring free surface 
confers a dipole character to the basically monopole nature of the acoustic radiation. 
If pB(t) denotes the pressure on the liquid side of the bubble interface, each bubble 
will then radiate a pressure field given, far from the bubble, by 

p=2dcose  2 p s  t-;  , 
t c l  

where R,  is the radius of the bubble, c the speed of sound in the water, and r and 8 
are local spherical coordinates with origin at  the free surface directly above the 
bubble, i.e. at the centre of the dipole. Here and in the following the dot denotes 
differentiation with respect to the argument. The expression (1) does not account for 
the local deformation of the free surface directly above the entrained bubble. We 
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have studied this effect in a separate paper (Oguz & Prosperetti 1990b), and found 
it to be small in the prevailing conditions. 

What is usually measured in experiment is the sound spectral level SL defined by 

Here ji, is the time Fourier transform of the (total) acoustic signal p ,  recorded during 
a time interval T ,  and Prei is a conventionally selected reference pressure. Following 
current usage, we take PreP = 1 pPa. The total acoustic field p ,  contains a 
contribution p from the oscillating bubbles, a contribution pi due to the impact of the 
drops, and a contribution pb of background noise. The individual bubble emissions 
and all of these fields are independent of each other and therefore add incoherently 

(3) 
so that 

The calculation of the impact pressure will be described in $ 5 .  Here we show how 
the bubble contribution 1; at  a certain position x under the water surface can be 
obtained. We assume that each surface element d S  is subject to the impact of 
n(R) dR dS droplets per unit time having a radius between R and R + d€i producing 
bubbles that radiate incoherently. The sound spectral level a t  x is then given by the 
following integral over the water surface and the drop size distribution 

[$TI2 = 1$12+l$i12+l$b12. 

where R ,  and R, are the upper and lower limits of the bubble-entrainment range of 
drop radii and T is the sampling time. The segment joining x to b S  has length r and 
forms an angle 8 with the vertical. I n  writing (4) we neglect bottom effects, losses, 
and non-rectilinear propagation. This equation therefore is applicable only relatively 
near to the free surface in deep bodies of water. With the assumption of spatial 
homogeneity of the rain the integration over 0 can be carried out with the result 

This result is independent of the depth a t  which the noise level is calculated because 
of the dipole nature of the surface source distribution. In  practice, this independence 
should be well verified down to depths smaller than the dimensions of the surface 
area subject to the rain. 

I n  order to carry out the remaining integration over the drop radius R, the 
dependence on R of the various quantities appearing in the integral (5)  must be made 
explicit. This we shall do with the help of the numerical results for bubble 
entrainment to be described in $4. Here, we turn our attention to the spectrum IjB 
of the pressure at  the bubble surface. 

We assume the entrained bubbles to pulsate linearly with a frequency and a 
damping not very different from those that they would have in an unbounded liquid. 
This simplification is supported by experiment (Pumphrey 1989 ; l’umphrey & Crum 
1990) and by our theoretical work specifically addressing the effect, of a distorted free 
surface on the oscillations of the bubble (Oguz & Prosperetti 1990b). We write the 

R b [ l  + x ( t ) l ,  (6) 
bubble radius at time t as 

and assume for X ( t )  the form of a damped sinusoidal oscillation with frequency w,, 

(7 )  X(t) = X,ePbt cos (w, t+ $), 
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FIGURE 3. Normalized power spectrum of an oscillating bubble according to ( 1  1 ) .  The graph is a 
plot of the second fraction in the right-hand side divided by b2/u4,. The values used for the 
calculation are wo = 61.7 x 103 s-l,fO = 9.8 kHz, b = 1.37 x 103 s-l, $ = 86.8" and correspond to the 
bubble entrained by a 0.50 mm-radius drop impacting with a terminal velocity of 4.01 m/s. 

where b is the damping constant and the amplitude X, and phase $ are given, in 
terms of the initial conditions X(O), X ( 0 )  of the bubble motion, by 

and 

xo = ( X2(0)+ p o )  + bX("'33" 
" 0  

X ( 0 )  +bX(O) 
"0 n o )  . 

tan-' $ = - (9) 

We shall devote considerable care to the calculation of X ( 0 )  and X ( 0 )  from the 
numerical results in $4. For t < 0, X ( t )  = 0. 

In the following b and oo have been calculated from the expressions given in 
Prosperetti (1984) or (1991). In general the main physical effects causing damping of 
the oscillations of gas bubbles are heat transfer, viscosity, and sound radiation. 
Owing to the presence of the free surface, however, the bubbles we are considering 
loose very little energy due to acoustic radiation and therefore this contribution to 
b has been neglected. This procedure is supported by the experimental data of 
Pumphrey & Crum (1990) who measured the damping constant for drop-entrained 
bubbles and found a better agreement with theory if radiation damping was 
disregarded. 

In terms of the dimensionless oscillation amplitude X the linearized Rayleigh- 
Plesset equation may be written 

P B  = p O + p R t x ,  (10) 
where p ,  is the static pressure and p the liquid density. The Fourier transform of p B  
can then be readily calculated by using (7)  and the final result is 

(11) 

(12) 

? - p2R4Xi (b2 + 03~ (b2 + m i  + 02) +A,  cos 2$ -A, sin 2@ 
(b2 + mi - "2)Z + 4W2b2 

IPS! - 7 
where 

A,  = 4bw0(bz + W ; ) ~ ( ~ ~ - W : )  +2bw2(3b4w,- 1Ob2d+3~:) ,  
A ,  = ( b 2 + ~ i ) 2 ( b 4 + ~ $ - 6 b 2 ~ i )  +w2(bs -  15b4wi+ 15b2w$-w,B). 
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To show the frequency dependence of the result (11) we present in figure 3 a graph 
of the second fraction in the right-hand side as a function of frequency f = w/2x for 
the case of a bubble with a diameter of 0.65 mm with t,b = 86.78'. As calculated 
according to the procedure of $4, these are the appropriate values for a drop with a 
radius R = 0.50 mm impacting a t  terminal velocity. The very sharp peak is a 
consequence of the smallness of the damping. 

The preceding procedure assumes radial pulsations of the bubbles and therefore 
neglects distortions of the spherical shape. Whenever, as in the present case, volume 
pulsations are strongly excited, radiation from the shape modes can be neglected 
even in the presence of nonlinear resonance. 

3. Entrainment dynamics 
We now address the task of numerically determining the bubble size and initial 

conditions that appear in the expression (1  1) of the radiated pressure power 
spectrum. For this purpose we make use of a mathematical model and numerical 
method that have been described in detail in an earlier paper (Oguz & Prosperetti 
1 9 9 0 ~ ) .  Briefly, the model assumes inviscid potential flow and the calculations, 
carried out by means of a novel formulation of the boundary element method, 
presuppose normal impact and axial symmetry. These are evidently idealizations of 
the real physical process. I n  particular, in the presence of wind and waves, the rain 
drops may impact at an appreciable angle. Wc shall comment later on the likely 
effect of this circumstance that is ignored in the model. 

The plan of the calculation is the following. We choose a number of drop radii in 
the bubble entrainment range. For each one of these values of the radius we calculate 
the terminal velocity according to Dingle & Lee (1972), and then run our numerical 
simulation of the impact process. At the end of the simulation we calculate the size 
and initial energy of the entrained air bubble. In  this manner we obtain the 
functional relationship between R and the quantities appearing in the integrand of 
(5) a t  discrete points. By suitably interpolating these values, the integration can be 
carried out and the spectrum calculated. 

Such a plan is rather ambitious and one cannot expect complete success. For 
example, from a detailed experimental study of drop impact carried out by 
Pumphrey & Elmore (1990), it is known that bubble entrainment near the 
boundaries of the entrainment range is not entirely reproducible even in laboratory 
conditions. A typical example is shown in figure 4, reproduced from that paper. This 
figure shows the measured frequencies radiated by the entrained bubbles for a drop 
radius of 0.5 mm and variable impact velocities. Each point is the average of a t  least 
30 drops, and the vertical bars indicate the standard deviation. It can be seen that, 
near the centre of the entrainment region, the scatter of the data is very small and 
the process quite reproducible. However, in the neighbourhood of the lower and 
upper boundaries, large fluctuations arise. These considerations imply that one 
cannot expect much more than a general agreement between measured and 
computed spectra. 

For a better understanding of the entrainment process, it is of interest to show in 
broad outline the sequence of events eventually leading to the entrapment of a 
bubble. For this purpose we include figure 5, corresponding to the case R = 0.5 mm, 
U = 4.01 m/s. Aside from small variations, this sequence is typical of all of the air 
entrainment cases. I n  the early stages the bottom of the crater tends to be flat. Later, 
the outward motion of the sides tends to reverse before that of the bottom, which 
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FIGURE 4. Measured frequency of oscillation and standard deviations of the bubble entrapped by 
the impact of a drop of radius 0.5 mm as a function of the impact velocity U. Each data point is 
an average of at  least 30 impacts (from Pumphrey & Elmore 1990). Drop diameter = 1 .OO mm ; , 
f (kHz) ; ---, terminal velocity 4.015 m/s. 

FIGURE 5. Calculated successive free-surface shapes for the case of a 0.5 mm-radius drop impacting 
a plane liquid surface a t  the terminal velocity of 4.01 m/s (top to bottom, left to  right). The time 
values indicated are in non-dimensional units referred to RIU. The calculation suggests the 
entrainment of a bubble 9.35 ms after the impact. 
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FIQURE 6. Enlargement of the region of the (R, U)-plane of figure 2 near the terminal velocity line. 
The solid dots represent the cases simulated numerically and the vertical lines the upper and lower 
limits of bubble entrapment according to the calculations. 

leads to a curious funnel shape which is confirmed by experiment (Pumphrey & Crum 
1988; Pumphrey et al. 1989; Pumphrey 1989; Pumphrey & Crum, 1990; Pumphrey 
& Elmore 1990). I n  this stage of the motion the crater is approxirnately conical, in 
close agreement with an exact potential-flow solution developed by Longuet-Higgins 
(1990). According to  this solution, the aperture of the cone decreases to a critical 
value of log", at which point a singularity is developed. Our numerical results are 
consistent with the existence of a limiting angle of this order and with the time 
evolution of the aperture of the cone predicted by Longuet-Higgins. His basic 
solution does not, however, include surface tension, which is accounted for only 
perturbatively. This circumstance suggests that the importance of surface tension is 
limited to  the vicinity of the bottom of the crater, where the bubble is entrapped, but 
is relatively small elsewhere. 

The cases for which the numerical simulations were carried out are shown by the 
dots along the terminal velocity line in figure 6, which is an enlargement of the 
corresponding part of figure 2. For convenience the computed points are labelled by 
a number that expresses the radius of the impacting drop in units of 0.01 mm. 
Contrary to the experimental limit, somewhere between 0.40 and 0.41 mm, our 
numerical method does not lead to bubble entrainment for drops smaller than 0.43 
mm (i.e. below point 43). A similar disagreement exists for the upper limit, with 
experiment placing i t  close to 0.53 mm, but computations still suggesting 
entrainment for a radius of 0.60 mm. These discrepancies have important 
consequences on the final results of our computations and will be discussed in $6. For 
each one of the cases marked in figure 6, we show in figure 7 the free surface shape 
in the vicinity of the bubble for the last computed timestep. 

We have argued in an earlier paper (Oguz & Prosperetti 199Oc) that a possible 
mechanism for the entrapment of a bubble can be found in the capillary wave that, 
as can be seen in figure 5 ,  originates a t  the rim of the crater. As this wave progresses 
inward, it tends to grow owing to geometric focusing and, if it has a sufficient 
amplitude and a suitable phase, it will eventually overturn and encapsulate a pocket 
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FIQURE 7. Last computed free-surface shapes of the region of the flow where bubbles are entrapped 
for the cases marked by dots in the previous figure with the corresponding non-dimensional times. 
The values of the drop radii vary between 0.41 and 0.50 mm in the top line and between 0.51 and 
0.60 mm in the bottom line. The radius increment is 0.01 mm. The calculations suggest that bubble 
entrapment starts at R = 0.43 mm. 

of air upon reaching the axis of symmetry. For this to  happen, the amplitude of the 
wave and the radius of the crater, both of which are evidently directly related to the 
energy of the impact, must be sufficiently large. This consideration is compatible 
with the existence of a lower bound on the velocity of the drop for entrainment to 
occur. Just  above this lower bound, the wave will not have overturned very much, 
which suggests that the entrained bubble should exhibit a narrow and vertically 
elongated shape as is indeed seen in the first few examples of figure 7. That, in these 
conditions, the process is very sensitive to  local surface impurities and disturbances 
is confirmed by the large scatter of the data of figure 4 in the vicinity of the lower 
entrainment boundary. 

As the impact velocity increases, the entrained bubble becomes wider with a much 
flatter bottom. This is the region in which, as experiment suggests, the entrainment 
process is very reproducible. We therefore expect our simulations to be more reliable 
in these cases. At still higher impact velocities, a transition takes place to  a regime 
in which an upward jet, originating a t  the bottom of the crater, fills most of the 
cavity before the sides can close in and entrap the air. As the impact velocity is 
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increased further, this jet develops earlier and earlier with respect to the time of 
reversal of the outward motion of the crater's sides. Eventually, it shoots out of the 
crater before the sides can establish contact, thus completely preventing air 
entrainment. Whether one or many minute bubbles are entrained in such marginal 
cases as shown in examples 58-60 of figure 7 is not clear. Certainly, according to the 
experimental data of figure 4, in this regime entrainment is not very reproducible. It 
may be noted that this trend with increasing velocity is very different from the case 
of a solid sphere in which bubbles are always entrained provided a minimum impact 
velocity is exceeded (Richardson 1948, 1955). 

4. The entrapped bubble 
The input to the noise spectrum calculation of § 2 consists of the initial volume, the 

initial rate of change of the volume, and the initial depth of each entrained bubble 
as a function of the radius and impact velocity of the entraining droplet. The 
numerical calculations are carried out in terms of dimensionless variables, indicated 
by an asterisk, referred to the characteristic length R and time R I U .  Differentiation 
with respect to the dimensionless time is indicated by a prime. 

Even though the entrained bubbles appear to be visually well defined, t o  avoid 
biasing the results, it is important to implement an algorithm capable of 
automatically identifying the quantities of interest for each numerical simulation. 
For this purpose we proceed as follows. After the nipple at the bottom of the crater 
starts to  develop (see e.g. frame 7 for t ,  = 70.779 of figure 5), for each timestep, we 
identify the point (actually a circle in the axis-symmetric geometry) closest to  the z- 
axis. We denote the distance of this point from the axis of symmetry (i.e. the radius 
of the circle) by r*(t*) and the portion of the trace of the free surface on a meridian 
plane below this line by 8,(t,). For each subsequent time-step we calculate the 
integrals 

dz 
r2 z A d s ,  

d ,  ='s v* S b  * * ds 

where s is the (dimensionless) arclength along 8, measured from the axis of symmetry 
and $* the (dimensionless) velocity potential. At the instant of time at which the 
bubble closes, these integrals give the initial bubble volume w,(O) = w(0)/R3, the 
initial volume velocity w'(0) = d(0) /UR2,  and the initial depth d,(O) = d(O)/R below 
the undisturbed free surface of the centre of the volume of the entrapped gas. I n  the 
calculation the surface is defined by points (with cylindrical coordinates r* and z* ) ,  
typically 10 to 15 in the region 8,. To evaluate the integrals all the surface quantities 
such as r* ,  z*,  a$*/an, are fitted by cubic splines for increased accuracy. The 10-node 
Gauss-Legendre quadrature formula is used over each arc joining two consecutive 
points along the surface. It should be noted that, since S,(t,) is not a material line, 
one would not expect the integral (14) to equal the time derivative of (13). 

The initial volume v(0) is converted to an effective initial radius Rb(0) by using the 
relation expressing the volume of a sphere. Since the bubble, a t  closure, contains air 
a t  atmospheric pressure, because of surface tension, this effective radius is slightly 



Numerical calculation of the underwater noise of rain 42 7 

(b) 0.16 I I I I I 
0.12 

0.08 x 
2- 
b? 0.04 

0.00 I '-'.- 

0 0.5 1 .o 1.5 2.0 2.5 

FIQURE 8. (a) Three free surface configurations of S, at t,  = 72.49,74.53, and 75.08 (R  = 0.50 mm, 
U = 4.01 m/s). (b )  Graph of r,a@,/an,, the integrand of (14), for the three surface shapes shown 
in a. 

S 

larger than the equilibrium radius of the bubble. For the range of bubble radii 
encountered here, however, the difference is of the order of 0.1 % and may be ignored 
in the calculation of the natural frequency and damping of the oscillations. However, 
this effect is included in the calculation of the initial displacement X ( 0 )  of the 
oscillator defined in $2 which is obtained from 

where K is the polytropic exponent (Prosperetti 1984, 1991). The initial velocity X ( 0 )  
is calculated from 
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FIGURE 9. ( a )  Sequence of computed surface shapes just before bubble formation for the case R = 
0.45 mm, U = 3.66 m/s. The earliest trace shown is for t ,  = 53.6 (6.59 ms) and the last one for 
t ,  = 56.22 (6.91 ms). ( b )  Sequence of computed surface shapes just before bubble formation for the 
case R = 0.5 mm, U = 4.01 m/s. The earliest trace shown is fort, = 70.47 (8.79 ms) and the last one 
for t ,  = 75.08 (9.36 ms). The identification of the bubble is explained in the text. 

In  obtaining these relations the initial energy due to surface tension has been 
disregarded. It is easy to check from the numerical results to be shown below that 
this contribution is entirely negligible. 

This procedure suffers from several shortcomings that it appears very difficult to 
obviate. Figure 8 (a) shows three snapshots of the region $,(t,) for K = 0.5 mm, U = 
4.01 m/s at  dimensionless times t, = 72.49, 74.54, and 75.08. Figure 8 ( 6 )  shows a 
graph of the integrand r* aq5,/an, of (14) as a function of the arclength s along the 
line S,(t) a t  the same instant of time. It can be seen that the greatest contribution 
to the integral comes from the region above the ‘equator ’ of the entrained bubble 
where the normal velocities are large, even though the distance from the axis is 



Numerical calculation of the underwater noise of rain 429 

(4 
1.0. ! 1 I 

, i l  -.-- 

-- 

I ! \- 

1 I 
; I  

i h  -- 0.4 

0.2 

0 
53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 

Dimensionless time, UI/R 

-- 
_. ..< +..-.--+-- . - 
--y- 

I I 

I -. . 
53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 

Dimensionless time, Ur/R 

(4 
- 5.20 1 

-5.25 - 
I I 
I /  - 1  + . i  - - ~ - -  ..__ 

I 

53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 53.6 54.0 54.4 54.8 55.2 55.6 56.0 56.4 
Dimensionless time, U t / R  Dimensionless time, U t / R  

FIGURE 10. Illustration of the extrapolation procedure used for the calculation of the radius, 
volume rate of change, and depth of submergence of the bubble at the moment of closure for the 
case R = 0.45 mm, U = 3.66 m/s. The solid lines are the numerical results and the dashed lines least 
squares fits. The abscissa is the dimensionless time UtIR .  ( a )  Radius of the bubble's 'neck' r*. The 
dotted line is obtained from the least square fit to the computed results (solid line) of an  expression 
of the form const.x(t,-t*)". (b) Dimensionless volume rate of change v; defined by (14). (c) 
Normalized radius of a sphere having the same volume as computed from (13). This quantity is 
assumed to be the radius of the entrained bubble a t  the moment of closure. ( d )  Normalized depth 
of the entrained bubble, d / R ,  according to the definition (15). 

relatively small. This circumstance causes problems of a physical and computational 
nature. Just  before closure of the cavity, viscous effects in the water and in the air 
flow become important. Secondly, a t  the moment of closure, additional energy must 
be dissipated in a very high-frequency acoustic radiation and, possibly, in local 
microscopic flows. All these effects will dissipate unknown amounts of the kinetic 
energy localized in this region. Computationally, a loss of accuracy is possible when 
the arcs used in the boundary integral method lie very close to the axis of symmetry. 
Although, of course, the resulting error will have effects everywhere on the free 
surface, it is expected to be greatest in this high-velocity region near the axis. 

Little can be done about the error introduced by the physical processes ignored in 
the present model. To mitigate the numerical error we follow the time history of the 
three quantities defined by (13)-(15) for the last 40-50 timesteps of the simulation 
and extrapolate the result to the instant t ,  of closure of the cavity. Typical examples 
of the procedure can be illustrated with the help of figures 9 and 10. Figures 9 (a)  and 
9 (b )  show the portion #,(t,) of the free surface over which the integrals (13)-( 15) are 
calculated a t  different instants of time for the cases R = 0.45 mm, U = 3.66 m/s and 
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FIGURE 11.  The ratio R,/R (solid line, left-hand vertical scale) and the dimensional bubble radius 
R, (dashed line, right-hand vertical scale) a t  the moment of bubble pinch-off as a function of the 
radius R of the impacting drop in mm. 

R = 0.5 mm, U = 4.01 m/s. To estimate the instant of closure of the cavity t ,  we plot 
the distance r*(t*) of the closest point to the axis as a function of time and 
extrapolate to r* = 0 by fitting an expression of the type const. x (t ,- t*)". As figure 
10(a) (corresponding to the case of figure 9a) shows, this fit agrees very well with the 
computed results. Typical values of a are in the range 0.57-0.65. 

Knowing t , ,  we can proceed to the calculation of the bubble conditions at  closure 
by a similar extrapolation procedure. For the initial equivalent radius and depth of 
submergence we use extrapolation to t ,  based on the least-square fitting of a cubic 
polynomial to the last computed values of these quantities. Figures 10(b)-(d) 
illustrate the accuracy of this procedure for w;(O), Rb*, and d,(O) for the case of figure 
9(a ) .  It is clear that  the first quantity, contrary to  the other two, is rather sensitive 
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FIGURE 13. Dimensional (dashed line, right-hand vertical scale) and non-dimensional (solid line, 
left-hand vertical scale) depth d of the entrained bubble at the time of pinch-off as a function of 
the radius R of the impacting drop in mm. 

to this extrapolation. It is interesting to note from figure 10(d) that the bubble is 
predicted to have a downward acceleration a t  the moment of closure in agreement 
with experiment. 

By repeating the above procedure for cases 43-60 shown in figures 6 and 7, we 
obtain R,,, v;l and d, as a function of the radius of the impacting drop. The results 
are plotted in figures 11-13. From these quantities we calculate X ,  and $, which are 
shown in figures 14 and 15 respectively. In these figures, shape-preserving Akima 
splines are used to interpolate between the computed points. The initial phase of the 
motion is very close to in, which implies that the initial energy of the bubbles is 
mostly kinetic rather than potential. The initial displacement is relatively large for 
the smaller drops, but they are produced in smaller numbers (figure 15) than the 
larger ones and do not affect the spectrum of the rain noise very much. 

The predictions of this part of our work can be compared with experimental data 
obtained by Pumphrey & Crum (1990) and Pumphrey & Elmore (1990) for the 
number of bubbles N(f)  entrained per unit frequency increment and for the dipole 
strength D of the (initial) bubble oscillations. To calculate the first quantity we 
assume that the number of bubbles in each 1 kHz-interval is proportional to the 
number of drops entraining bubbles with natural frequency in that range, and that 
the drops have a uniform distribution in the size range of interest. The 
proportionality constant is adjusted by matching with the experimental point a t  the 
frequency of 10 kHz. The result of this calculation is shown in figure 15 by the dashed 
line, while the solid line shows the experimental data of Pumphrey & Crum (1990) 
and Pumphrey & Elmore (1990). Since the scale is bi-logarithmic, the differences are 
somewhat greater than they appear to be at  first sight, but the general trend of the 
results is quite close, with N decaying approximately proportionally to f3. It may 
also be noted that the number of bubbles oscillating a t  high frequency is several 
orders of magnitude smaller than that of bigger bubbles. 

The dipole moment D is defined by writing the radiated pressure field in the form 

(18) 
D 
r 

p = -cos8e-bTcos(W0~+$), 
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R (-1 
FIQURE 14. (a) The computed initial amplitude X, of the bubble oscillations its a function of the 
radius R of the impacting drop. ( b )  The computed phase angle $ of the bubble oscillations, (7) ,  as 
a function of the radius R of the impacting drop. 

where T = t-rr/c. In  view of (1) and (10) D is found to be 

2pdRg D=- X, [w,(wi - 3b2) sin $+ b ( 3 4  - b2)  cos $1. 
c 

Neglecting for simplicity the initial radius increase of the bubble, so that from (9) $ % 

in, and using the fact that b < oo, from (11) and (8) we readily find the approximate 
expression 

The dipole moment D obtained from our numerical results according t o  the previous 
expression (19) is shown in figure 16 by the dotted line. The points along this line 



Numerical calculation of the underwater noise of rain 433 

103 

i5 $ 1  I 

10-1 
1 00 10' 102 

f (kHz) 
FIGURE 15. Bubble number as a function of their natural frequency in kHz. The vertical axis 
represents the number of bubbles with a natural frequency within a 1 kHz interval. The 
distribution of the drops in the radius range between 0.4 and 0.6 mm is assumed to be uniform and 
the resulting number of bubbles that falls within each 1 kHz interval is evaluated. Experimental 
distribution obtained by Pumphrey & Crum (1990). 
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FIGURE 16. The dipole strength D in N/m of the bubbles at  the moment of pinch-off as a function 
of their natural frequency in kHz. The dots along the curve indicate the corresponding impacting 
drop size in units of 0.01 mm. Note that D is not monotonic with drop size. -, Experimental 
results of Pumphrey & Elmore (1990). 

correspond to simulations 4 3 4 0  of figure 6. The solid line reproduces the 
measurements of Pumphrey & Crum (1990) and Pumphrey & Elmore (1990). The two 
sets of results are close for the lower values of D ,  but diverge markedly a t  the higher 
values. These larger values, however, correspond to very small bubbles for which our 
numerical method is not very precise and which, in any case, contribute very little 
to the predicted noise level as noted above. The most important difference between 
data and computation is the fact that  the theoretical results extend to lower 
frequencies than the experimental ones. This is another symptom of the most serious 
problem affecting our calculation to which we shall return in 56. 



434 H .  N .  Oguz and A .  Prosperetti 

Before we can compare field measurements of rain noise with the numerical model, 
i t  is necessary to consider the contribution of the drop impact process. 

5. Impact noise 
Before a bubble is entrapped, the drop impact process itself generates an acoustic 

field pi  in the water. To estimate this impact noise we proceed as follows. 
One can expect the impact noise to be mostly contained in the frequency band 

U / R  <f < c /R.  These limits follow from the presence of a fast timescale, associated 
with acoustic propagation in the drop, and a slow timescale, associated with the 
penetration of the drop into the receiving liquid. It also follows from elementary 
considerations that the pressure due to the impact must be of the order of 

This form is obtained by likening the impacting drop to a source of mass of 
magnitude pUR2 and by dividing by the timescale R / U  in place of' taking the time 
derivative of the source strength. The first factor is the spatial dependence of a dipole 
source, and the ratio R / h  of the drop radius to the acoustic wavelength is needed to 
convert monopole to dipole radiation. Here we have assumed the effective depth of 
the source to be of the order of the only lengthscale available, namely R .  
Furthermore, consistent with the estimate U/R of the time derivative, we take h x 
(c /U)R.  The remaining details of the acoustic emission due to the impact must be 
characterized by a dimensionless function u dependent on time and the only 
available parameters of the problem R ,  U,  c ,  p. Gravity and surface tension should 
not appear in this list because they are irrelevant over the short timescales of the 
impact process. The only possibility for such a function is clearly 

u = U ( S . 3 .  
Since the impact Mach number U/c  is very small, dependence on this quantity may 
be omitted (i.e. U/c  can be approximately replaced by 0 ) ,  and we are led to postulate 
the following expression for the radiated sound pressure field 

The total energy radiated by the impact is given by 

(23) 

where the integration is extended over any surface completely enclosing the source. 
By taking this surface to be a sphere centred at the impact point and by neglecting 
any sound radiated in the air we then find, from (23) 
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FIGURE 17. The universal impact noise curve (29) according to Franz (1959). 

from which, using Parseval's theorem and the fact that the integrand is an even 
function of w ,  

where zi is the (dimensionless) Fourier transform of the function u defined by 

In this relation r(2 and 7 are conjugate dimensionless variables. The energy density 
E(f) in the frequency band between f and f +  df can be read directly from (26) and 
is 

2(f)=4n--KM3 zi - , 
U 1 c)r 

where K = 3cpR3V is the kinetic energy of the impacting drop and M = U/c  the 
Mach number of the impact. This argument leads one to expect that the function 

wheref, = f R/U, should be a universal function. Indeed Franz (1959) has plotted his 
measurements of 2 in such a scaled form and has found data falling on a single line 
when allowance is made for experimental scatter. His results for E are summarized 
in figure 17. 

The above equation gives the spectrum for a single drop impacting a liquid surface. 
To obtain a pressure power spectrum for a given distribution of drop sizes we need 
to integrate over all the possible sizes and the area. An analysis very similar to the 
one developed for the bubble noise in $ 2  leads to the following expression for the 
sound spectrum level 
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where, as before, n is the number of drops per unit radius increment per unit time per 
unit area and T is the sampling time. With this expression, the universal curve for 
the impact spectrum (E*)  available from Franz’s paper, and the knowledge of the 
drop size distribution for a particular rain event, the portion of rain noise due to drop 
impact can be calculated. 

6. Comparison with experiment 
The information presented in figures 11-14, together with known expressions for 

the damping constant and oscillation frequency of gas bubbles (Prosperetti 1984, 
1991), enables us to  make a definite prediction of the contribution of bubble 
entrainment to rain noise provided the number of rain drops falling per unit time, 
unit surface, and unit radius increment is given. By adding the measured background 
noise and the noise due to  impacts, we are then in a position to  compare our theory 
with experiment and test the hypothesis that most of the underwater noise of rain 
in the range between 7-8 kHz and 20 kHz is due to the entrained air bubbles. 

The only data suitable for our purposes are those by Scrimger et al. (1987), who 
measured both noise levels and rain drop distributions. These data concern five 
different rain events over a lake, labelled awe, in light wind conditions. The drop size 
distributions were obtained by means of a distrometer. We have already shown in 
figure 2(a)  an example of these data as reported in Scrimger et al. for events a and 
b.  We have linearly interpolated and replotted these data in figure 18 for events a and 
b ,  for which the wind speed was 0.9 m/s, and events c-e, for which the wind speed was 
1.4m/s. This figure shows very different drop size distributions and rainfall 
intensities and we may therefore conclude that these five data sets are suitable for 
a test of the present model. The data of Scrimger et al. also include the background 
noise level, common to all five events. These data have been used for &I2 in (3). 

A comparison between the measured spectra (dotted lines) and our numerically 
computed ‘synthetic’ spectra (solid lines) is given in figure 19(a-e). I n  view of the 
poor resolution of the distrometer data in the small range of drop radii where bubbles 
are entrained, in carrying out the integration over drop size in (5), we have taken n 
to be a constant. The values used are n = 575,325,299,284,284 number of drops per 
m2 per second per mm radius for events awe respectively. These numbers have been 
obtained by adding the number of drops in bins 6 and 7 and dividing by the area 
(50 cm2), the duration of the measurement (90 s) and the radius increment (0.2 mm). 

Two general conclusions are immediately apparent. The theoretical predictions are 
in reasonable agreement with the shape of the experimental spectral peak and its 
level, particularly for rain events a and b.  However, the position of t,he spectral peak 
is predicted to be to the left of the experimental one. This suggests that a systematic 
error is present in our model which produces relatively big bubbles in greater 
numbers than the actual physical process. An early indication of this problem was 
furnished by the failure shown in figure 6 of the computed entrainment boundaries 
to match precisely the experimental ones. The computational entrainment region 
extends to  higher impact velocities and drop radii. It is therefore not surprising to 
find entrained bubbles with a somewhat larger radius than in the experiment. 

It is difficult to pinpoint with precision the source of these discrepancies. For one 
thing, the large experimental scatter in the results of Pumphrey & Elmore (1990) 
shown in figure 4 indicates that, especially near the edges of the entrainment region, 
bubble entrainment is a random process even in laboratory Conditions. This 
evidently highlights the sensitivity of the physical process to  even small fluctuations 
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FIQURE 18. The number of drops per unit area (in cm2), per unit time (in s), per unit radius 
increment (in cm) as a function of rain drop radius for rain events a-e of Scrimger et aZ. (1987). 

in the conditions prevailing when it occurs. This sensitivity must of course be 
mirrored by a corresponding strong effect of small errors on the computed results. As 
explained in detail in our earlier paper (Oguz & Prosperetti 1990a), the drop impact 
calculation tends to be very unstable because of surface tension effects. The method 
that we have developed to handle this problem appears to work quite well for the 
description of the flow produced by the impacting drop but may lead to some 
inaccuracies in the calculation of the entrapped bubble which is an event occurring 
in a very small region of the overall flow. Another problem that is encountered in the 
calculation is the modelling of the very early stages of the liquid-liquid contact 
(Oguz & Prosperetti 1990a). Here we have proceeded as in our earlier paper, starting 
with a finite contact area equal in all cases, and this may introduce some additional 
error dependent on the radius and velocity of the impacting drop. 

A further potential source of error is the neglect of several physical processes. For 
example, the computational model is based on the assumption of inviscid irrotational 
flow. While this approximation appears to be justified for the overall flow caused by 
the drop impact, it may be an oversimplification at particular locations and times. 
For instance, when the ‘neck’ of the cavity is about to close, viscous effects in its 
neighbourhood must become important retarding the formation of the bubble. The 
liquid at  the bottom of the cavity may then have time to rise more than we predict, 
leading to the entrapment of a smaller volume of air. The air viscosity will have the 
opposite effect, tending to increase the air pressure in the cavity just before closure. 

In the model it has been assumed that each drop falls on a quiescent plane liquid 
surface. This is certainly an idealization because of the small ripples produced by the 
other drops, the presence of surface waves, and the effect of the wind that imparts 
a horizontal component to the velocity of the drops. Evidence that these factors 
must be important is furnished by a comparison of the experimental spectra for 
events a and b,  corresponding to light rain and low wind velocity, with those of 
events c and e ,  for which the wind speed was somewhat higher and the rainfall rate 
much greater. The shape of the peak appears to be fairly sharp in the first two cases, 
while it is more rounded in the other two. Rain noise data taken at sea in the presence 
of higher winds (Scrimger et al. 1989; Nystuen 1990) also show a broad peak. It is 
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FIGURE 19. Comparison of ---, measured and -, predicted underwater noise spectra for the rain 
events of Scrimger et al. (1987). (a) Rainfall rate 0.4 mm/h, wind speed 0.9 m/s. (b) Rainfall rate 
0.3 mm/h, wind speed 0.9 m/s. (c) Rainfall rate 3.2 mm/h, wind speed 1.4 m/s. ( d )  Rainfall rate 0.6 
mm/h, wind speed 1.4 m/s. (e) Rainfall rate 0.4 mm/h, wind speed 1.4 m/s. 

possible that drops impacting a disturbed surface entrain bubbles in a less 
predictable fashion than in the case of a quiescent surface, which would tend to blur 
the spectral peak. The model used in this paper is evidently incapable of accounting 
for these effects without the introduction of empirical probabilistic elements. Recent 
laboratory investigations also indicate that impacts a t  angles greater than 20°-300 
from the normal inhibit bubble entrapment (Medwin 1990; Medwin, Kurgan & 
Nystuen 1990). Neglect of this fact would then result in an overprediction of the 
spectral level which could explain why, in our results, the theoretical levels for events 
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FIGURE 20. Calculated sound level spectrum of rain including only . * . , background noise and 
impact noise for rain events c and d and e of Scrimger et al. (1987). 

c and e are significantly larger than the experimental ones while for events a and b 
the two match within a few decibels. 

The above considerations indicate that, as could be expected, a natural rain event 
is far more complex than the highly idealized model used in our calculations. In  this 
respect, our procedure can certainly benefit from further work tending to make the 
model more realistic. A t  the same time, however, the model does suggest very 
strongly that the prominent peak in the spectrum of rain is due to the oscillations of 
entrained air bubbles. To further corroborate this interpretation, we show in figure 
20 the sound levels predicted by neglecting bubble oscillations and including only the 
measured background noise (dotted line) and the impact mechanism of §5 for events 
c-e. It is obvious that, while matching with experimental data below a few kHz is 
possible, at higher frequencies noise levels many orders of magnitude lower than the 
observed ones are predicted by neglecting bubble emissions. 

An immediate consequence of the mechanism of rain noise put forward in this 
paper is a scaling law for the underwater noise signature of rain. This can be seen as 
follows. Let us assume for simplicity that the raindrop number density n(R) 
appearing in (5)  can be approximated by a constant, 

N n(R) x 
R,-Rnl’ 

where N is the total number per unit area and time of bubble-entraining drops with 
radius in the range R,  < R < R,. Then (2) can be re-written in the form 

where F is a universal function defined by 
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FIGURE 21. Underwater rain noise data of Scrimger et al. (1987) for rain events a-e scaled according 

to (32) with the drop count in the range 0.4-0.6mm of drop radii. 

The data of Scrimger et al. (1987) are replotted in figure 21 in the fashion suggested 
by this relation. It is seen that rain events a and b conform rather closely with this 
prediction, unlike the other ones. It is interesting to note that the curve 
corresponding to  the highest rainfall rate, 3.2 mm/h (event e ) ,  when plotted in this 
way, lies below the other ones. As mentioned before, these circumstances may be due 
to  an inhibition of the bubble entrainment mechanism in the presence of wind and 
surface disturbances. A further possible reason of the only limited success of the 
suggested scaling is the rather inaccurate estimate of the drop number in the narrow 
range of radii of interest. Clearly, better data are needed for a more stringent test of 
this hypothesis. 

Finally, we show in figure 22 a graph of our computed value of the universal 
function F compared with the average of the five spectra of figure 21. The similarity 
between the two structures is quite striking. 

7. Summary and conclusion 
We have shown that available measurements of the underwater noise produced by 

rain cannot even remotely be explained in terms of the impact noise produced by rain 
drops hitting the surface of the receiving liquid. We have made an attempt to predict 
the observed noise on the basis of numerical calculations of bubble entrainment by 
drop impacts. The computed results show a broad agreement of the predicted sound 
levels and general shape of the spectral peak with experiments. However, the 
maximum of the peak appears to be centred at  about 8 kHz rather than 14. The 
origin of this difference is unknown but is believed to be related to several errors and 
approximations in the calculation, on the one hand, and to the extreme sensitivity 
(demonstrated by experiments) of the entrainment process to even minute 
perturbations. I n  a related paper (Oguz & Prosperetti 1990d) we have studied the 
sensitivity of the volume of the entrained bubble to the numerical dissipation used 
in the calculation. We have found that a slight increase of the latter with respect to 
the procedure used in the present calculations leads to larger bubbles. Hence the 
discrepancy between experimental and calculated results cannot be imputed to the 
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FIGURE 22. ---, the universal function F defined by (33) compared with -, the average of the 
five normalized spectra of figure 2 1 .  

dissipative surface smoothing techniques that we have used to stabilize the 
numerical calculation. 

While it is evident that further refinements of our method would be desirable, we 
believe that the preceding results lend considerable support to the idea that bubble 
entrainment is responsible for the underwater noise of rain. Our purely theoretical 
argument in support of this mechanism complements the experimental indications 
obtained in the laboratory by Pumphrey, Crum, and co-workers. In a broader 
context, one would expect that entrained air would nearly always dominate 
underwater noise. An important example is furnished by the breaking of waves. 

The recent finding that drops impacting a t  non-normal incidence are less likely to 
consistently entrain bubbles (Medwin 1990; Medwin et aE. 1990) has motivated the 
hypothesis that ambient noise under agitated conditions should be attributed to the 
impact process (Nystuen 1990). Although the question must be left open a t  this time, 
on the basis of our results, we strongly doubt that impact can ever be a significant 
source of underwater noise. Other bubble-entraining processes (e.g. enhanced micro- 
breaking, local disruption of the surface vortical layer) are possible and may play a 
significant role under those conditions. 

If the explanation of the prominent 14 kHz-peak of the underwater noise of rain 
put forward here is correct, it follows that its level is not correlated to the total 
amount of rainfall, but is only sensitive to the population of drops with diameters 
between 0.9 and 1.2mm capable of entraining bubbles. Hence, other frequency 
ranges should be used for the acoustic monitoring of the total rainfall over bodies of 
water (Nystuen & Farmer 1989). Of course, in principle, the 14 kHz-peak could be 
used if the shape of the size distribution of drops were known, but this is 
unfortunately hardly ever the case. 
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